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We describe the linear algebraic method for the numerical solution of the integral form of 
the Schroedinger equation with a nonlocal exchange kernel. We show explicitly the implemen- 
tation of Newton-Cotes quadrature formulae of high order in order to account properly for 
the discontinuities arising in the derivative of the integrands originating from the two-particle 
Green’s functions and the nonlocal kernels. The proposed technique is backed by numerical 
examples from scattering theory-scattering by a Yukawa potential and electron scattering by 
hydrogenic ions in the static-exchange approximation. The method is found to be efficient and 
numerically stable. ‘V 1987 Academic Press, Inc 

1. INTRODUCTION 

In the scattering of slow electrons by atoms, ions, or molecules one needs to 
allow for the indistinguishability of the projectile electron and the target electrons 
for an accurate description of the process. Mathematically, this results into a non- 
local exchange operator in the partial wave Schroedinger equation. Nonlocal 
operators in the partial wave Schroedinger equation occur in the scattering problem 
in other areas of physics involving identical Fermi particles in the projectile and the 
target. The complex optical potential treatment of nucleon scattering by nuclei 
provides such an example. 

We have adapted the following approach to the solution of the integrodifferential 
equation. We convert the partial wave integrodifferential Schroedinger equation to 
an integral equation with the use of appropriate Green’s functions. The integrals in 
the ensuing equation are approximated by discrete numerical quadratures giving us 
a set of linear-algebraic equations. This set of equations is solved to obtain the 
solutions at the designated quadrature points. This approach can be readily 
generalized to a multichannel scattering problem involving a set of coupled 
integrodifferential equations. This approach has the advantage of being noniterative 
in nature and is found to be numerically stable. 

The basic ideas of the method were applied to study the low energy elastic scat- 
tering of thermal neutrons by deuterons a long time ago (Motz and 
Schwinger [ 11). A careful study was performed by Fraser [Z] in the late fifties; 
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Fraser subsequently applied this method to the scattering of orthopositronium by 
hydrogen atoms [3]. The linear algebraic method has also been extensively used by 
Seaton’s group [4] for electron-atom and electron-ion collisions. In their work, 
finite difference formulae are used for the differential operators on a grid of points. 
This gives rise to a set of linear algebraic equations for the unknown scattering 
functions. More recently the method has been exploited for the solution of 
integrodifferential equations in the integral form by Collins and Schneider [S J for 
electron-molecule scattering. For other representative applications of this approach, 
the reader is referred to the work of Ho and Fraser [6], El-gendi [7], and 
Stern [8, 93. 

Although the linear algebraic method has been rather extensively used, some 
previous workers have ignored derivative dicontinuities in the Green’s 
functions [S]. The difficulty associated with the discontinuity of the slope of the 
integrand was recognized by Fraser [2, 33 some time ago. Ignoring the discon- 
tinuity of the slope can produce misleading results. For example, in the test case of 
static-approximation of electron-hydrogen scattering (without exchange effects) 
examined by Stern [8], it was inferred that a low order quadrature scheme, the 
trapezoidal rule, is more reliable than the higher order Newton-Cotes and Gauss- 
quadrature schemes. This is appropriately attributed to the inadequate represen- 
tation of the discontinuous derivative of the Green’s function at the mesh-points in 
the higher order quadrature schemes (see Section 2.B). We have developed an 
efficient algorithm which allows for the derivative discontinuities, and enables the 
use of higher order Newton-Cotes formulae. In this respect, the present work is a 
significant advance over previous ones. We are able to treat the exchange effects 
(nonlocal kernels) and extension to the multichannel situation within the same 
framework. For improved efficiency, use of a matrix form is made for the represen- 
tation of the linear operation of integration. The numerical procedures of the 
present approach are well adapted for implementation on vector processing com- 
puters. 

In Section 2, we set up the basic equations for which we seek numerical solutions 
and discuss the implementation of Newton-Cotes quadrature schemes with well- 
defined error terms. In Section 3, we present two illustrative examples; (i) scattering 
of a particle by Yukawa potential where the results can be compared with the 
existing accurate results and (ii) scattering of electron by a hydrogenic ion in the 
static-exchange approximation to allow for nonlocal kernels. We follow with 
numerical results and our conclusions. 

2. FORMALISM 

A. Basic Equations 

We consider the following integro-differential equation 

[H(r)- k2 + V(r)] u(r) + j,’ dx x*W(r, x) u(x) =O, (1) 
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where H(r) is the radial Hamiltonian for which the solution of the wave- equation 
is known analytically. This solution would be used in the construction of the 
Green’s function. Typically, H(r) has a term with second radial derivative, an 
angular momentum term and perhaps a simple potential like the Coulomb poten- 
tial. V(r) and W(r, x) are, respectively, the local (direct) and nonlocal (exchange) 
potentials. 

We can regard Eq. (1) as describing a one-channel problem: in this case H, V, W, 
and u are functions; or a multichannel problem in which case U(T) is a vector, V(r) 
and W(r, x) are symmetric matrices, and H(r) and k2 are diagonal matrices. For 
simplicity, we begin with the single channel case. 

We solve (1) formally by the Green’s function technique. Let G(r, Y’) be the 
solution to the following equation 

[H(r)-k2] G(r, r’)=v. (2) 

In general, the two-particle Green’s function can be expressed as 

G(r, 4 = -f(kr < Mkr > 1, (3) 

where f and g are the regular and irregular solutions of the second order 
homogenous differential equation, and r < and r, are the smaller and the greater of 
r and r’, respectively. 

Assume that the solution u(r) obeys the asymptotic boundary condition for the 
description of scattering, viz. 

lim u(r) *f (kr) + tan Gg(kr). (4) r + I’ 

It can be shown that Eq. (1) can be expressed in the integral form, 

u(r)=f(kr)-jy G( r, r’) V(r’) u(r’) r’* dr’ 

- 1” x2 dx u(x)[~ G(r, r’) W(r’, x) r’* dr’. 
JO JO 

In practice, the potentials involved in Eq. (5) would generally be short- range 
and so the upper integration limit could be reduced to an appropriate finite value, 
say R. 

At this point, the general practice would be to apply a numerical quadrature 
scheme for the integrals in (5). As long as the points of the unknown function u are 
the same as the pivotal points of the quadrature scheme, we have a closed system of 
simultaneous linear algebraic equations. The solutions of this system of equations 
determine the unknown function u on a grid of points corresponding to the pivotal 
points of the quadrature. Let us carefully examine the application of various 
quadrature schemes in the next subsection. 
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B. Numerical Quadratures 

An integral can be approximated using a numerical quadrature scheme as 

s 
h N 

y(x) dx = c w, y(x,) + Error term. (6) u i= 1 
The order of the error term depends on the quadrature scheme used. But in order 
for the error term to be defined usefully, the integrand J(X) must be continuous 
over the closed interval [a, b] and differentiable m times over the open interval 
(a, 6), where m depends on the specific order of approximation for the quadrature. 
This is due to the fact that the error term is evaluated by the application of the 
mean-value theorem. 

In Eq. (5), the integrand contains the Green’s function which has a discontinuous 
first derivative at Y = r’. Also the nonlocal kernel W could have a discontinuous 
derivative at r’ = x. (See our Example B.) Hence as it stands, the application of a 
numerical quadrature as in (6) over the full integration range would give rise to an 
undefined error. Fraser [2, 31 and Stern [8] have recognized this difficulty. Ho and 
Fraser [6] have stated in their work that they have taken due note of the discon- 
tinuities of the slope of the Green’s functions without giving any details. In 
addition, El-gendi proposed a method using a Clenshaw-Curtis type of quadrature 
formula at Chebyshev points to solve integral equations containing a kernel with a 
discontinuous first derivative within the range of integration [7]. Stern has tried 
this approach for the scattering of electrons by hydrogen atoms in the static 
approximation, i.e., without a nonlocal exchange kernel [9]. However, Stern found 
that the method is inefficient in terms of computational time in comparison to the 
composite trapezoidal rule, the lowest order of Newton-Cotes schemes. Here we 
show explicitly how the difficulty associated with the discontinuous slope of the 
integrand within the range of integration can be overcome in the implementation of 
high order quadrature schemes. 

We allow the points of discontinuous derivatives to be the endpoints for sub- 
ranges of integration. With this in mind, we rewrite Eq. (5) as 

u(r) = f(kr) - fi G( r, r’) V(r’) u(r’) r” dr’ 

- 
s RG( r, r’) V(r’) u(r’) rt2 dr’ 
r 

- foR dx x2u(x)[/i< G(r, r’) W(r’, x) r” dr’ 

+ If; G( r, r’) W(r’, x) r’* dr’ 

+ f,” G( 
r, r’) W(r’, x) rr2 dr’ 1 

where 1, and 1, are the lesser and the greater of x and r, respectively. 

(7) 
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The integrands for the inner integrals in the last term in (7) involving the Green’s 
function and the nonlocal potential are specified numerically. So the integrations 
may be performed by any quadrature scheme. The use of unevenly spaced 
quadrature schemes, such as Gauss-quadratures, would be awkward. Evenly spaced 
quadrature formulas, such as Newton-Cotes, are relatively straightforward to 
implement because the values of the integrands need to be calculated once and 
stored. The procedure, to implement efficiently higher-order Newton-Cotes schemes 
for these integrals, is described here. 

One needs to exercise caution with the integrals which involve the unknown 
function U. In order to obtain a closed set of simultaneous equations, the pivotal 
points of the quadrature should match the values of Y on the left-hand- side, which 
also happens to be an endpoint in the integrals. This eliminates the use of Gauss- 
quadrature schemes as it would give us an underdetermined set of simultaneous 
equations. Even for the schemes with evenly spaced points (such as Newton-Cotes) 
one needs to exercise caution for the following two reasons: (1) For N-point 
scheme, with N other than 2, Y could fall at a pivotal point between 1 and N. In this 
case the J;, integrand would need a different set of weights than the case where r 
falls at either 1 or N. (2) Because our potentials, V and W, may be changing very 
rapidly in some regions (such as exponentially varying), we would need to 
implement a liner mesh of evenly spaced points in those regions. We explain these 
two points with the help of Figure 1 below. 

First, let us specify the 5point Newton-Cotes formulae. 

5 
x., = xg + 4h 

J’(X) dx =$ CRY, + 32y, + 12y, + 32y, + 7y,] + 0(/z’) Bode’s Rule 
Yl 

(8) 

For smaller integration intervals (see[ lo]), we use 

s .X,J + h 

Y(X) dx=& [251y,+6461,, -264y,+ 106y,- 19y,] +O(h’), (9) 
-G3 

s xg + 2h h 
Y(X) dx = 9. L-29~~ + 124,~~ + 24~2 + 4y, - y4] + O(h’) (10) 

ro 

J’(X) dx=; [9Y, + 34y, + 24y, + 14y, - y4] + 0(/z’). (11) 

The functions with discontinuous derivatives in Eq. (7) are of the form 

f(r) &‘) for r<r’ 

and 

g(r) f(r’) for r’ < r, 
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where f and g are separately differentiable. The integrals actually performed using 
Eqs. (8))( 11) involve f or g separately, and thus no discontinuous derivatives occur 
in the range from x0 to x4. 

We deal with the composite form of the 5-point Newton-Cotes closed-type for- 
mulae as follows. One of the minor restrictions in this case would be that the mesh- 
size must change at a 4n + 1 point and that the last point of integration must also 
be 4n + 1, for n a positive integer. The endpoint of an integral in Eq. (7) could fall 
on any of the points shown in Fig. 1. For the endpoint on points 1, 5, 9, and 13 a 
straightforward implementation of the composite form of Bode’s rule Eq. (8), is 
possible with the different values of h for points below point 9 and above point 9. 

For endpoints of integration falling on the other points in the figure, we have to 
use the appropriate quadrature given by Eq. (9), (lo), or (11). It should be pointed 
out that the functional form of y(x) for x less than the upper limit of integration is 
used beyond the upper limit of integration. For example, for the endpoint of 
integration on point 2, the integral j: would be evaluated by the use of Eq. (9). 
Here the values of y,, y,, and y, are obtained using the same function J(X) which is 
used to obtain values for y, and y ,, i.e., in application to Eq. (7), we extend the 
known functional form of the integrand to y,, JJ~, and y4 in order to use Eq. (9) 
despite the fact that the actual values of the integrand at y,, y,, and y, would be 
different due to the derivative discontinuity at x0 + h. Then for J: range, we would 
use Eq. (8) for 1: and (9) for Jf and take the difference or use (11) backwards for 1:. 
Again, the values of the integrand used are extended beyond the range of 
integration using a single known function J(X). 

This explains why the mesh-size can not be changed at any arbitrary point. This 
procedure maintains the order of the error term to be h’. Lower order formulas 
lead to somewhat simpler codes but have larger error terms (O(hj) for the 
trapezoidal rule, O(h5) for Simpson’s rule). 

For example, if in (9) 

Ax) =.f(r) g(-~), x < x0 + h, 

= ET(r) f(x), x>x,+h, 

then the values of all the yj on the right-hand side in (9) are obtained from f(r) g(x) 
alone, even for y,, y,, and y4. 

We note in Eq. (7) that we require a number of integrals with different sets of 
endpoint values. Since integration is a linear operation, we find it convenient to 
represent it in the following matrix form. 

(12) 

FIG. I. An example of grid- points used in 5-point Newton-Cotes quadrature formula. 
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where the index i represents point r and j represents x. Similarly, we define another 
matrix 

5 
R 

y(x) dx = c w2(i,j) yi. (13) 
r / 

For any arbitrary endpoints r, and r2 within the closed interval 0 to R, we have 

s r2y(x)dx=~ C~,(b>.+-o,(i,,Al Y, 
‘I I 

= C [o,(i,, j) - ~(4, AI yi (14) 

The matrices w, and wq are constructed from the number of mesh- points, mesh- 
sizes and the weight functions in the respective quadratures. The integrand and its 
necessary extensions beyond the endpoint of integration are contained in y. So once 
the mesh details and the quadrature are fixed, o, and o2 matrices can be calculated 
one time and then used repeatedly in any number of integrals. 

After the quadrature scheme has been implemented, Eq. (7) can be rewritten as 

4ri) = f(kr,) - 1 B,u(r,), (15) 

where the elements of the square matrix B embody the details of the potentials, 
Green’s functions and the quadrature scheme. It can be recast in a matrix form as 

[I+B]u=f, (16) 

where I is the identity matrix. Our solution vector u can be obtained by a matrix 
inversion. 

After knowing the solution u on the given grid-points, one can substitute it in the 
summation on the right-hand- side of Eq. (15) in order to have an interpolation 
formula to obtain u(r) at any arbitrary value of r. 

The present method casts the numerical work in the form of a solution to a 
matrix equation. This is particularly amenable to vector processing computers for a 
rapid numerical solution. 

3. EXAMPLES 

For the purpose of illustration of the method described in the previous section, 
we present two physical examples. The first deals with the scattering of a particle by 
a Yukawa potential. This example does not involve a non-local kernel. We chose 
this example because numerically accurate results exist [ 111 with which we can 
compare the convergence of the results of the present method. The second example 
is that of the scattering of electrons by hydrogenic ions in the static-exchange 

51(1/6R.‘l-7 



96 OZA AND CALLAWAY 

approximation. This example illustrates the use of the method with a non-local 
potential, viz. the exchange potential. Stern [8] had examined the numerical 
stability of different methods for the electron scattering by hydrogen atom in the 
static approximation which does not include exchange. Realistic multichannel scat- 
tering calculations have been succesfully carried out using the ideas presented here 
c121. 

A. Scattering by Yukawa Potential 

We consider the scattering in the S-wave (L = 0). So we have in (1) 

H(r)= -fg(r2%), 

W(r, x) = 0. (19) 

In this case the Green’s function in (3) is 

G(r, r’) = 
sin(kr < ) cos(kr , ) 

kr<r,, 

where sin krJ& r and cos kr/& r are, respectively, the regular and irregular 
solution of the homogenous differential equation in (2) viz. 

1 d --- r’d-k2 y(r)=O. 
r’dr dr 1 

In the asymptotic limit, the solution u(r) behaves as 

lim u(r) * sin kr/& r + tan 6 cos krJ& r, 
r-a (22) 

where 6 is the phase-shift. The numerical solution at large r is matched with (22) to 
extract the phase-shift. Alternatively, and formally equivalently, one may also com- 
pute tan 6 by an integration over the numerically obtained wave functions [2,8]. 

B. Scattering of Electron by Hydrogenic Ion 

We consider the scattering of an electron with charge, e, by a hydrogenic ion 
with nuclear charge Ze in the static exchange approximation for an arbitrary par- 
tial wave. Then in (1) we have 

L(L+ 1) (Z- l)e2 
r2 - r ’ (23) 
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the direct static interaction potential is 

V(r) = -e2ep2zr ( 1 ;+z (24) 

and the exchange potential with nonlocal character is 

Wr,x)=(-ww) (E,,-k2)SLO+&& 1 R ,,s(x). (25) 
I> 

In the above expressions, R,,(r) is the radial eigenfunction of the ground state of 
the hydrogenic ion, E,, is its ground state energy and 6,0 is a Kronecker delta. The 
symbols Y, and r, represent the smaller and the larger of r and x, respectively. S is 
the total spin of the system. 

We use atomic units with energies in Rydbergs. We have e2 = 2 and the ground 
state radial eigenfunction is 

R ,,$( r ) = 2Z3”2e ~ Zr. P-6) 

The solution u(r) must satisfy the boundary conditions 

ru(r) - YL+ I for r+O 

- F,(kv) + tan GG,(kr) for r+co. (27) 

Here F,(kr) and G,(kr) are regular and irregular Coulomb-functions 
corresponding to a charge of (Z- 1). For hydrogen (Z= l), they reduce to 
spherical Bessel and spherical Neumann functions. The Green’s function is 
expressed in terms of these functions as 

1 F,(kr,) GL(kr, 1 G(r, r’) = -- 
k r<r, 

(28) 

From the numerical solution u(r), the phase-shifts are extracted by matching with 
asymptotic solution at large r, Eq. (27), as in the case of Yukawa potential. 

4. NUMERICAL RESULTS 

We have developed FORTRAN programs to generate w, and o2 matrices 
defined in Eqs. (12) and (13) based on the Newton-Cotes quadrature schemes. 
Using these matrices, we generate the B matrices for the physical examples con- 
sidered here. For the purpose of the solution of the linear algebraic equations (16), 
we use the subroutines from IMSL library [ 131. All the computational work is per- 
formed on an IBM 3081 computer in double precision arithmetic (64 bit word). 
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TABLE I. 

Three Different Even-Spaced Grids Used in This Work 

Mesh size (h,) 0.12 0.30 0.8 
Upto point (N,) 9 17 25 
With radial value (r,) 0.96 3.36 9.76 

Meth size (h,) 0.05 0.10 0.2 0.4 0.6 
Upto point (N,) 13 17 21 33 41 
With radial value (rr) 0.6 1.0 1.8 6.6 11.4 

Mesh size (h,) 0.05 0.1 0.2 0.3 0.4 
Upto point (N,) 13 21 33 45 57 
With radial value (r,) 0.6 1.4 3.8 7.4 12.2 

We give the different numerical grids used in the calculations in Table I. The 
meshes are chosen to be liner in the inner radial distances where the interactions are 
the strongest. The numerical grids used in the present work were established in 
most part on physical grounds, i.e., considering the range of short-range interac- 
tions. No extensive search was made for an “optimum” grid. 

A. Scattering by Yukawa Potential 

The Yukawa potential (18) is specified by g2 = 2.0 and p = 1.0 for which highly 
accurate numerical values of the phase-shift are given by Callaway [ 1 l] at a num- 
ber of energies. The calculation is performed using three different Newton-Cotes 
schemes. The sets of grid-points used from Table I are with a total of 25, 41, and 57 
points. 

The numerical values of the phase-shifts thus obtained are given in Table II. For 
the sake of comparison, the so-called exact phase-shifts from reference [ 111 are also 
included. With the exact values in there, the convergence patterns of various 
methods can be readily judged. There are really no surprises in the results. The 
results are much better at lower energies and deteriorate gradually with increasing 
energy. As the energy increases, the solution has more oscillations and thus 
demands a finer grid for improvement in the results. For a given number of points, 
with the same grid, the accuracy is significantly improved with the higher order 
scheme. Again for a given quadrature scheme, the liner the grid, the higher is the 
accuracy. Within different schemes, at the lowest energy, we observe that the phase- 
shift with relatively crude mesh of 25 points but with a high order Spoint New- 
ton-Cotes scheme yields a better phase-shift than the grid of 57 points used on the 
2-point Newton-Cotes scheme (trapezoidal rule). Naturally, this speaks in the favor 
of using the higher order schemes if they are available and can be implemented 
accurately. One must bear in mind that we have been able to achieve this by 
properly accounting for the discontinuity in the derivative of the integrand. 

In order to show how a higher order scheme fails to achieve reliable and desired 
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TABLE II 

Phase-Shifts in Radians for Scattering from Yukawa Potential for L = 0 

0.01 0.1 1.0 2.0 5.0 10.0 

a 2s 2.444589 1.726090 1.094994 0.935066 0.139757 0.603974 
b 25 2.439295 1.721895 1.092177 0.933445 0.744652 0.619742 
c 25 2.439522 1.721879 1.092358 0.933238 0.743034 0.621848 

a 41 2.452692 1.733826 1.097427 0.935870 0.746969 0.615502 
b 41 2.439975 1.722499 1.092718 0.933757 0.743640 0.619990 
C 41 2.439678 1.722232 1.092477 0.933596 0.743445 0.620729 

z 57 57 2.439742 2.446079 1.722299 1.727806 1.094429 1.092544 0.933514 0.934297 0.744038 0.746887 0.618312 0.617878 
C 57 2.439662 1.722215 1.092456 0.933438 0.744341 0.617987 

Exact 2.439659 1.722210 1.092461 0.933515 0.745045 0.621987 

d 48 2.452020 1.733215 1.098572 0.938664 0.748490 0.620955 
d 96 2.442797 1.724979 1.093983 0.934744 0.745287 0.618213 
d 144 2.441058 1.723444 1.093130 0.934016 0.744693 0.617707 
d 192 2.440447 1.722905 1.092831 0.933760 0.744485 0.617530 

Exact 2.439659 1.722210 1.09246 1 0.933515 0.745045 0.621987 

Note. Energy is in Rydbergs; 25, 41 and 57 arc the total number of points for (a) trapezoidal rule, (b) 
Simpson’s rule and (c) 5-point Newton-Cotes quadrature. See Table I for the numerical grid. Also 
included are the results with (d) Gauss-Legendre quadrature with 48, 96, 144, and 192 points. The exact 
phase-shifts are from [ 111. 

accuracy if we do not explicitly account for the discontinuity in the derivative of the 
integrands, we have done the same calculation with Gauss-Legendre quadrature 
schemes of different orders. These are also given in Table II along with the exact 
results. The maximum radial distance we choose to go out is 12 atomic units, i.e., 
R = 12.0. From the results of the Newton-Cotes quadrature schemes, this should be 
sufficiently far. We observe, in the phase-shifts at k* = 0.01 Ry, that the results with 
quadratures up to 48 points (which is a very high order scheme) are inferior to all 
results using Newton-Cotes schemes. And even with a 192-point Gauss-Legendre 
scheme, the phase-shifts haven’t achieved the accuracy of the results by Simpson’s 
rules or the 5-point Newton-Cotes rules with the crudest of mesh-points. At large 
energies, such as above 2.0 Ry, the phase-shift using the increasing order of Gauss- 
quadrature schemes are clearly converging to an incorrect result. Similar 
irregularities, to a much lesser degree, also exist for the results in the Newton-Cotes 
schemes. But it should be borne in mind that at the highest energies the limitations 
are dictated by the fineness in the grid- points due to rapid radial oscillations in the 
solution as opposed to the adequacy of a given scheme. And so it is best to draw 
conclusions from the low-energy results. 
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We conclude from the results that the linear-algebraic method used with the 
integral form of the equations is numerically very stable. 

B. Scattering of Electron by Hydrogenic Ions 

The results presented here are in the static-exchange approximation. First, we 
present the results for the scattering of electron by the neutral hydrogen atom. The 
results are given for the partial waves IS, and 3P, at a number of incident energies 
in Table III. Again as in the Yukawa potential case, we have examined three dif- 
ferent Newton-Cotes quadrature schemes using grid- points with 25, 41, and 57 
points from Table I. Such an analysis is repeated here to demonstrate that the 
inclusion of exchange does not cause any complications, particularly of numerical 
nature. Again there are really no surprises. The choice of grid- points affects the 

TABLE III 

Phase-Shifts in Radians for Electron Scattering by Hydrogen Atom in Static Exchange Approximation 
at a Number of Incident Energies (Ry) 

p 0.01 

Singlet S-wave 

a 25 2.4013 
b 25 2.3984 
C 25 2.3988 

a 41 2.3934 
b 41 2.3969 
C 41 2.3970 

a 57 2.3957 
b 57 2.3964 
C 57 2.3964 

Triplet P-wave 

t 25 25 0.0022 0.0022 
C 25 0.0022 

a 41 0.0022 
b 41 0.0022 
C 41 0.0022 

a 57 0.0022 
b 57 0.0022 
c 57 0.0022 

0.09 0.25 0.49 0.76 1.0 2.0 5.0 

1.5175 1.0365 0.7472 0.6045 0.5418 
1.5132 1.0306 0.7415 0.6022 0.5443 
1.5132 1.0307 0.7412 0.6015 0.5433 

1.5055 1.0276 0.7416 0.6010 0.5432 
1.5093 1.0308 0.7440 0.6020 0.5427 
1.5093 1.0309 0.7441 0.6022 0.5430 

1.5078 1.0304 0.7435 0.6008 0.5415 
1.5085 I.0311 0.7443 0.6018 0.5428 
1.5085 1.0311 0.7443 0.6018 0.5428 

0.0520 0.1732 0.2897 0.3453 0.3635 
0.0510 0.1695 0.2835 0.3393 0.3585 
0.0510 0.1693 0.2832 0.3387 0.3579 

0.0513 0.1702 0.2850 0.3414 0.3612 
0.0511 0.1694 0.2833 0.3388 0.3579 
0.0511 0.1693 0.2833 0.3388 0.3579 

0.0512 0.1698 0.2840 0.3396 0.3588 
0.0511 0.1694 0.2833 0.3388 0.3579 
0.05 11 0.1694 0.2833 0.3388 0.3579 

0.4893 0.5393 
0.5116 0.5450 
0.5104 0.5427 

0.5128 0.5453 
0.5096 0.5425 
0.5096 0.5442 

0.5078 0.5449 
0.5094 0.545 1 
0.5093 0.5450 

0.3609 0.3242 
0.3598 0.3187 
0.3597 0.3200 

0.3648 0.3227 
0.3593 0.3198 
0.3594 0.3196 

0.3606 0.3211 
0.3594 0.3192 
0.3594 0.3192 

N&e. 25, 41 and 57 are the total number of grid points for trapezodial rule (a), Simpson’s rule (b) 
and 5-point Newton Cotes quadrature (c). 
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convergence more than does the order of the quadrature scheme. As a matter of 
fact, with the 57-point grid, the phase-shifts with the Simpson’s scheme are in com- 
plete agreement with the ones with the 5-point Newton-Cotes scheme. 

At the lowest incident energies, phase-shifts are significant only in S-waves. With 
increasing energies higher partial waves also contribute significantly to the phase- 
shifts. For the partial-waves presented here, our phase-shifts are in agreement with 
the ones reported by Burke et al [14] for the common incident energies of 
k2 = 0.01, 0.09, 0.25, and 0.49 Ry. At higher energies, the scatter in our S-wave 
phase-shifts by different quadratures and the different grid- points is somewhat 
more than at the low energies. This indicates the need to improve the grid- points at 
higher energies due to increasing radial oscillations in the solution. For higher par- 
tial waves, the 57-point grid seems to be adequate even at k2 = 5.0 Ry. 

We comment here on the execution time for different cases. The c.p.u. seconds are 
reported for an IBM 3081 computer. For a given number of points, the execution 
time was found to be independent of the quadrature scheme and independent of the 
partial wave. This encourages us to implement higher order quadrature schemes at 
no extra cost. The composite c.p.u. time for the calculation of the phase-shifts at 
eight incident energies was found to be 1.90, 7.5, and 20.4 seconds with the grid- 
points having 25, 41, and 57 points, respectively. The ratios of the c.p.u. times are 
approximately proportional to the ratio of the cubes of the dimensions of the 
resulting matrices. Since it is well- known that the order of operations in the 
solution of a linear algebraic system is n3 where n is the dimensionality of the 
system, we infer that most of our c.p.u. time is spent in obtaining the solution of the 
linear algebraic equations. 

In Table IV, we present the phase-shifts for the scattering of electrons by 
hydrogenic ions with the nuclear charge of Z = 2 (He + ) in the static-exchange 
approximation. The 5-point Newton-Cotes scheme with the 57-point grid was used. 
The radial meshes are scaled by a factor of (l/Z) to recognize the fact that with the 
increasing nuclear charge, the effective region of interaction shrinks in the scaled 

TABLE IV 

Phase-Shifts for Electron Scattering by Hydrogen-Like Helium Ion in Static-Exchange Approximation at 
a Number of Incident Energies (Ry) 

0 0 0.3825 0.3566 0.3231 0.2996 0.2910 0.2897 0.2941 0.2859 
0 1 0.9157 0.8805 0.8165 0.7387 0.6727 0.6273 0.5101 0.3765 
1 0 3.0674 3.0628 3.0638 3.0770 3.0965 3.1137 0.0260 0.088 1 
1 1 0.1791 0.1962 0.2125 0.2179 0.2152 0.2107 0.1923 0.1647 
2 0 3.1399 3.1379 3.1347 3.1320 3.1317 3.1330 0.0024 0.0320 
2 1 0.003 1 0.0072 0.0154 0.0264 0.0359 0.0424 0.0582 0.0725 

Note. Five-point Newton-Cotes quadrature is used with a numerical grid of 57 points. 
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proportion. Also to keep in proportion with the energy spectrum of the target ion, 
the incident energies are scaled by the factor of 2’. By a parallel calculation with 
the Simpson’s rule (not presented here), identical phase-shifts are obtained; 
indicating that the reported phase-shifts have converged. 

Again we observe as in the case of the Yukawa potential that the method is 
numerically stable. 

5. CONCLUSIONS 

We have described the linear algebraic method for the solution of the 
Schroedinger equation with a nonlocal kernel. The difficulty of encountering dis- 
continuities in the derivatives of the integrands, due to two-particle Green’s 
function and nonlocal exchange kernels, is recognized. A technique to implement 
the high order Newton-Cotes quadrature scheme with error of 0(/r’) in order to 
properly account for such discontinuities is presented. The linear operation of 
integration is represented in matrix form for better efficiency in handling a large 
number of integrals. 

The practical applications of the method are demonstrated by two physical 
examples of increasing amount of complexity. The simplest case treated is that of 
the scattering of a particle by Yukawa potential. By the use of Gauss-Legendre 
schemes, with which it is not possible to account adequately for the aforementioned 
discontinuities, we show superior convergence of our technique with even-spaced 
Newton-Cotes quadrature schemes. It is observed that the method is somewhat 
tolerant to the inadequacies in the use of Gauss-Legendre schemes thereby yielding 
reasonable, although not very accurate, results. In problems for which the correct 
answers are not known ahead of the attempted solution, this fact can unfortunately 
lead to deceptive conclusions. 

The case of the electron scattering by hydrogenic ions in the static-exchange 
approximation which involves nonlocal exchange kernels is also succesfully treated 
within the same framework. The convergence of the phase-shifts with respect to 
numerical grids and different quadrature schemes is examined. Phase-shifts are 
presented for the partial waves, ‘S and 3P, for the one electron targets of neutral 
hydrogen atom and singly ionised helium ion for a number of incident electron 
energies. 

We conclude from these example that the linear algebraic method is numerically 
very stable. In addition it is noniterative in nature and yields high-accuracy results. 
We are now using this procedure in multichannel calculations with energy-depen- 
dent, complex, nonlocal optical potentials for the scattering of electrons by 
hydrogen atoms and hydogenic ions [ 121. 
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